Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(7)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37999150

ABSTRACT

Dry fruits and nutshells are biological capsules of outstanding toughness and strength with biomimetic potential to boost fiber-reinforced composites and protective structures. The strategies behind the Betholletia excelsa fruit mechanical performance were investigated with C-ring and compression tests. This last test was monitored with shearography and simulated with a finite element model. Microtomography and digital and scanning electron microscopy evaluated crack development. The fruit geometry, the preferential orientation of fibers involved in foam-like sclereid cells, promoted anisotropic properties but efficient energy dissipating mechanisms in different directions. For instance, the mesocarp cut parallel to its latitudinal section sustained higher forces (26.0 ± 2.8 kN) and showed higher deformation and slower crack propagation. The main toughening mechanisms are fiber deflection and fiber bridging and pullout, observed when fiber bundles are orthogonal to the crack path. Additionally, the debonding of fiber bundles oriented parallel to the crack path and intercellular cracks through sclereid and fiber cells created a tortuous path.

2.
J Struct Biol ; 213(2): 107726, 2021 06.
Article in English | MEDLINE | ID: mdl-33781897

ABSTRACT

In the course of a lifetime the crowns of teeth wear off, cementum thickens and the pulp closes-in or may stiffen. Little is known about how these changes affect the tooth response to load. Using a series of finite element models of teeth attached to the jawbone, and by comparing these to a validated model of a 'young' pig 3-rooted tooth, the effects of these structural changes were studied. Models of altered teeth show a stiffer response to mastication even when material properties used are identical to those found in 'young' teeth. This stiffening response to occlusal loads is mostly caused by the thicker cementum found in 'old' teeth. Tensile stresses associated with bending of dentine in the roots fall into a narrower distribution range with lower peak values. It is speculated that this is a possible protective adaptation mechanism of the aging tooth to avoid fracture. The greatest reduction in lateral motion was seen in the bucco-lingual direction. We propose that greater tooth motion during mastication is typical for the young growing animal. This motion is reduced in adulthood, favoring less off-axis loading, possibly to counteract natural bone resorption and consequent compromised anchoring.


Subject(s)
Aging/physiology , Dental Cementum/physiology , Mastication/physiology , Tooth Mobility/physiopathology , Tooth Root/physiology , Animals , Computer Simulation , Finite Element Analysis , Jaw/physiology , Models, Biological , Molar/physiology , Swine , Tooth Root/physiopathology
3.
Dent Mater ; 37(3): e162-e175, 2021 03.
Article in English | MEDLINE | ID: mdl-33358015

ABSTRACT

OBJECTIVES: Selective caries removal (SCR) is recommended over non-selective removal for managing deep carious lesions to avoid pulp exposure and maintain pulp vitality. During SCR, residual carious dentin is left behind and sealed beneath the restoration. The biomechanical effects of such residual lesions on the restored tooth remain unclear and were assessed using finite element modeling (FEM). METHODS: Based on µ-CT images of a healthy permanent human third molar, we developed five finite element models. Generic class I and II cavity restorations were modeled where residual lesions of variable sizes were either left or fully removed on occlusal and proximal surfaces. The cavities were restored with adhesive composite. All 3D-FE models were compared with a model of a healthy, non-treated molar. A vertical load of 100 N was applied onto the occlusal surface. RESULTS: Regardless of the lesion size, in molars with occlusal lesions higher mean stresses were predicted along the filling-lesion interface than in all other models. The smallest occlusal lesion (Ø1 = 1 mm) resulted in the highest maximum stresses at the filling-lesion interface with large stress concentrations at the filling walls indicating failure risk. In conclusion, lesion site and extent are influencing parameters affecting the filling-lesion interactions and thus the biomechanical behavior of the tooth after SCR. SIGNIFICANCE: Retaining carious lesions around the pulpal floor affects the deformation and stress states in tooth-filling complexes. The higher stresses observed in molars with occlusal lesions may affect restoration stability and longevity. Suprisingly, more extended occlusal lesions may provide a more favorable tooth performance than less extended ones. In contrast, in molars with proximal lesions the residual lesion had only limited effect on the tooth's biomechanical condition.


Subject(s)
Dental Caries , Dental Restoration, Permanent , Composite Resins , Dental Caries/therapy , Dental Caries Susceptibility , Finite Element Analysis , Humans , Molar
SELECTION OF CITATIONS
SEARCH DETAIL
...